viernes, 20 de noviembre de 2015

2.3.8 Integrales que incluyen funciones logarítmicas.

La siguiente es una lista de integrales de funciones logarítmicas.
Nota: x>0 se asume en este artículo.

\int\ln x\,dx = x\ln x - x

\int (\ln x)^2\; dx = x(\ln x)^2 - 2x\ln x + 2 x

\int (\ln x)^n\; dx = x(\ln x)^n - n\int (\ln x)^{n-1} dx \qquad\mbox{(para }n\neq 1\mbox{)}

\int \frac{dx}{\ln x} = \ln|\ln x| + \ln x + \sum^\infty_{i=2}\frac{(\ln x)^i}{i\cdot i!}

\int \frac{dx}{(\ln x)^n} = -\frac{x}{(n-1)(\ln x)^{n-1}} + \frac{1}{n-1}\int\frac{dx}{(\ln x)^{n-1}} \qquad\mbox{(para }n\neq 1\mbox{)}

\int x^m\ln x\;dx = x^{m+1}\left(\frac{\ln x}{m+1}-\frac{1}{(m+1)^2}\right) \qquad\mbox{(para }m\neq 1\mbox{)}

\int x^m (\ln x)^n\; dx = \frac{x^{m+1}(\ln x)^n}{m+1} - \frac{n}{m+1}\int x^m (\ln x)^{n-1} dx  \qquad\mbox{(para }m,n\neq 1\mbox{)}

\int \frac{(\ln x)^n\; dx}{x} = \frac{(\ln x)^{n+1}}{n+1}  \qquad\mbox{(para }n\neq 1\mbox{)}

\int \frac{\ln x\,dx}{x^m} = -\frac{\ln x}{(m-1)x^{m-1}}-\frac{1}{(m-1)^2 x^{m-1}} \qquad\mbox{(para }m\neq 1\mbox{)}

\int \frac{(\ln x)^n\; dx}{x^m} = -\frac{(\ln x)^n}{(m-1)x^{m-1}} + \frac{n}{m-1}\int\frac{(\ln x)^{n-1} dx}{x^m} \qquad\mbox{(para }m,n\neq 1\mbox{)}

\int \frac{x^m\; dx}{(\ln x)^n} = -\frac{x^{m+1}}{(n-1)(\ln x)^{n-1}} + \frac{m+1}{n-1}\int\frac{x^m dx}{(\ln x)^{n-1}}  \qquad\mbox{(para }n\neq 1\mbox{)}

\int \frac{dx}{x\ln x} = \ln|\ln x|

\int \frac{dx}{x^n\ln x} = \ln|\ln x| + \sum^\infty_{i=1} (-1)^i\frac{(n-1)^i(\ln x)^i}{i\cdot i!}

\int \frac{dx}{x (\ln x)^n} = -\frac{1}{(n-1)(\ln x)^{n-1}} \qquad\mbox{(para }n\neq 1\mbox{)}

\int \sin (\ln x)\;dx = \frac{x}{2}(\sin (\ln x) - \cos (\ln x))
\int \cos (\ln x)\;dx = \frac{x}{2}(\sin (\ln x) + \cos (\ln x))

DERECHO DE AUTOR

Vitutor. (s.f.). Integrales logaritmicas y exponenciales. Recuperado el 29 de 11 de 2015, de Vitutor: http://www.vitutor.com/integrales/indefinidas/integrales_logaritmicas.html

No hay comentarios.:

Publicar un comentario