- Ir a la columna no cero extrema izquierda
- Si el primer renglón tiene un cero en esta columna, intercambiarlo con otro que no lo tenga.
- Luego, obtener ceros debajo de este elemento delantero, sumando múltiplos adecuados del renglón superior a los renglones debajo de él.
- Cubrir el renglón superior y repetir el proceso anterior con la submatriz restante. Repetir con el resto de los renglones (en este punto la matriz se encuentra en forma escalonada).
- Comenzando con el último renglón no cero, avanzar hacia arriba: para cada renglón obtener un 1 delantero e introducir ceros arriba de éste sumando múltiplos correspondientes a los renglones correspondientes.
Una variante interesante de la eliminación de Gauss es la que llamamos eliminación de Gauss-Jordan, (debido al mencionado Gauss y a Wilhelm Jordan), esta consiste en ir obteniendo los 1 delanteros durante los pasos uno al cuatro (llamados paso directo) así para cuando estos finalicen ya se obtendrá la matriz en forma escalonada reducida.
EJEMPLO
Supongamos que es necesario encontrar los números "x", "y", "z", que satisfacen simultáneamente estas ecuaciones:
Esto es llamado un sistema lineal de ecuaciones. El objetivo es reducir el sistema a otro equivalente, que tenga las mismas soluciones. Las operaciones (llamadas elementales) son estas:
- Multiplicar una ecuación por un escalar no nulo.
- Intercambiar de posición dos ecuaciones
- Sumar a una ecuación un múltiplo de otra.
Estas operaciones pueden representarse con matrices elementales que se usan también en otros procedimientos como la factorización LU o la diagonalización por congruencia de una matriz simétrica.
En nuestro ejemplo, eliminamos x de la segunda ecuación sumando 3/2 veces la primera ecuación a la segunda y después sumamos la primera ecuación a la tercera. El resultado es:
Ahora eliminamos y de la primera ecuación sumando -2 veces la segunda ecuación a la primera, y sumamos -4 veces la segunda ecuación a la tercera para eliminar y.
Finalmente eliminamos z de la primera ecuación sumando -2 veces la tercera ecuación a la primera, y sumando 1/2 veces la tercera ecuación a la segunda para eliminar z.
Despejando, podemos ver las soluciones:
Para clarificar los pasos, se trabaja con la matriz aumentada. Podemos ver los 3 pasos en su notación matricial:
Primero:
Después,
Por último.
Si el sistema fuera incompatible, entonces nos encontraríamos con una fila como esta:
Que representa la ecuación: , donde a ≠ 0. Es decir, , lo que supone una contradicción y, por tanto, no tiene solución.
DERECHO DE AUTOR
Gowers, T., & Barrow-Green, J. (08 de 09 de 2008). Wikipedia. Recuperado el 28 de 11 de 2015, de Eliminación de Gauss-Jordan: https://es.wikipedia.org/wiki/Eliminaci%C3%B3n_de_Gauss-Jordan
No hay comentarios.:
Publicar un comentario