viernes, 13 de noviembre de 2015

4.2 Álgebra de Matrices.

La matriz unidad de orden nxn es la matriz / de orden nxn en la cual todas las entradas son cero excepto los de la diagonal principal, que son 1 .En símbolos:
    Iij = 1 si i = j y Iij = 0 si i ≠ j.
Una matriz cero es una matriz O en la cual todas las entradas son cero.
Las operaciones de adición, multiplicación escalar, multiplicación entre matrices se cumplen las siguientes reglas:

A+(B+C) = (A+B)+CRegla asociativa de adición
A+B = B+ARegla conmutativa de adición
A+O = O+A = ARegla unidad de adición
A+( - A) = O = ( - A)+ARegla inversa de adición
c(A+B) = cA+cBRegla distributiva
(c+d)A = cA+dARegla distributiva
1A = AUnidad escalar
0A = OCero escalar
A(BC) = (AB)CRegla asociativa de multiplicación
AI = IA = ARegla unidad de multiplicación
A(B+C) = AB + ACRegla distributiva
(A+B)C = AC + BCRegla distributiva
OA = AO = OMultiplicación por matriz cero
(A+B)T = AT + BTTrasposición de una suma
(cA)T = c(AT)Trasposición de un producto escalar
(AB)T = BTATTrasposición de un producto matriz
La única regla que está notablemente ausente es la de conmutatividad del producto entre matrices. El producto entre matrices no es conmutativo: AB no es igual a BA en general.
Ejemplos

La siguiente es la matriz unidad de orden 4×4:
    I =
    1
    0
    0
    0
    0
    1
    0
    0
    0
    0
    1
    0
    0
    0
    0
    1
El fallo de la regla conmutativa para el producto entre matrices se muestra por el siguiente ejemplo:




    A =
    0
    1
    1/3
    -1
    B =
    1
    -1
    2/3
    -2
    AB =
    2/3
    -2
    -1/3
    5/3
    BA =
    -1/3
    2
    -2/3
    8/3
DERECHO DE AUTOR
Cristina Steegmann Pascual . (2010). ÁLGEBRA DE MATRICES . 26-11-15, de Financiado por la Secretaría de Estado de Educación y Universidades (MECD) Sitio web: http://www.uoc.edu/in3/emath/docs/Algebra_Matrices.pdf

No hay comentarios.:

Publicar un comentario