Si un sistema de m ecuaciones y n incógnitas tiene todos los términos independientes nulos se dice que es homogéneo.
Sólo admite la solución trivial: x1 = x2 =... = xn = 0.
La condición necesaria y suficiente para que un sistema homogéneo tenga soluciones distintas de la trivial es que el rango de la matriz de los coeficientes sea menor que el nº de incógnitas, o dicho de otra forma, que el determinante de la matriz de los coeficientes sea nulo.
r < n
Observemos que esto se debe a que:
Ejemplos:
DERECHO DE AUTOR
No hay comentarios.:
Publicar un comentario